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Multiphase control of a nonlinear lattice
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Large amplitude, multiphase excitations of the periodic Toda latticggp solutions are created and
controlled by small forcing. The approach uses passage through an ensemble of resonances and subsequent
multiphase self-locking of the system with adiabatic wavelike perturbations. The synchronization of each phase
in the excited lattice proceeds from the weakly nonlinear stage, where the problem can be reduced to that for
a number of independent, driven, one-degree-of-freedom oscillatory systems. Due to this separability, the phase
locking at this stage is robust, provided the amplitude of the corresponding forcing component exceeds a
threshold, which scales as 3/4 power of the corresponding frequency chirp rate. The adiabatic synchronization
continues into a fully nonlinear stage, as the driven lattice self-adjusts its state to remain in a persisting and
stable multifrequency resonance with the driving perturbation. Thus, a complete control eigtye state
becomes possible by slow variation of external parameters.
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I. INTRODUCTION dox[9,10]. The continuum limit of the lattice allowed a con-
venient approach to nonlinear partial differential equations,
Integrable and near-integrable nonlinear systems comprissontributing to the development of the modern nonlinear sci-
a foundation for modeling and understanding a large varietgnce of systems of many degrees of freedom. The integrabil-
of nonlinear phenomengl]. Therefore, finding realizable ity of the Toda lattice was proven by Hen¢thl] and FI-
methods of excitation and control of different coherent statesschka[12], and its initial value problem comprised one of
in these systems is one of the main goals of nonlinear scithe famous applications of the inverse scattering transform
ence. In many cases, one knows that a certain nontrivial sanethod[13,14]. The Toda lattice and its various approxima-
lution in a nonlinear system exists, but its realization requiregions continue to attract scientific attention with applications
satisfaction of very complicated initial/boundary conditions,in mathematical physicgl5], statistical physic$16], con-
making these states practically unaccessible. For exampldensed mattdrl7], and soliton physicEl8,19, to name just
some one-dimensional systefid possess multiphase solu- few recent examples. In the present work, we focus on the
tions described by nontrivial nonlinear functions of manyN-periodic Toda lattice and pose a question of how to
variables(phasey all of form kx— wt, with different wave  strongly excite a desired numbefn<N) of degrees of free-
vectorsk and frequencies in each phase. The question is dom (each characterized by its action-angle variabieshe
how to excite and control one of such solutions. system by starting with the lattice at rest and applying syn-
Recently, in a number of applications in extended systemshronizing, adiabatically varying perturbations. We seek a
[3-7], a new approach to realization of some of nontrivial continuing multiphase locking in the system, accompanied
coherent states was suggested. The idea was based on stast-a large(but reversiblg deformation of the driven solution,
ing from a simple, easily realizable equilibrium and adding ayielding a desired nontrivial state in the process of evolution.
special driving perturbation, such that the desired nontrivial The scope of our presentation will be as follows. We shall
state of the system was reached in the process of evolutiofllustrate our approach by numerical simulations in Sec. .
In particular, in Ref.[7], multiphase solutions of the We shall consideN=5 periodic lattice example and show
Korteweg—de VriegKdV) equation were excited from zero that a desired number of degrees of freedom in the system
by a perturbation in the form of a superposition of wavescan be excited, provided the amplitudes of the corresponding
with slowly varying frequencies, passing through multiple components in the synchronizing perturbation of a particular
resonances in the system. It was found that under certaitype exceed certain thresholds. We shall analyze this thresh-
conditions, the perturbed KdV system multiphase lockedld phenomenon in Sec. Ill, showing that the thresholds are
(synchronizeglwith the driving perturbation, yielding a large characteristic signatures of resonant trapping by passage
excursion in the solutions space, as the driving frequenciethrough multiple resonances in the weakly nonlinear stage of
varied in time. Due to this synchronization, a complete con-evolution of our system. We shall also show that the weakly
trol of a multiphase state of the KdV system was achieved byonlinear limit of the driven periodic Toda lattice can be
slow variation of external parameters. In the present work weepresented byN— 1 decoupleddriven anharmonic oscilla-
apply similar ideas to excitation and control of multiple de-tors. As a consequence, each degree of freedom can be ex-
grees of freedom of a periodic Toda lattice. cited independently This will allow us to use the existing
The Toda latticd 8] is one of the most studied dynamical results for one-degree-of-freedom synchronized systems in
systems. It is a chain of unit masses, each interacting with itsalculating the multiphase synchronization thresholds for the
two neighbors via exponential interaction potential. WeaklyToda lattice. Section IV will present our theory of a fully
nonlinear approximations to the lattice played an importannonlinear synchronized evolution of the driven lattice. Also,
role in the resolution of the Fermi-Pasta-UldfPU) para- in Sec. IV, the theoretical scaling of frequencies of small
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modulations of synchronized states versus driving ampli- 2 g !
tudes will be tested numerically. Finally, Sec. V will present 2 ‘
our conclusions.

o

DISPLACEMENT g,
o

Il. SYNCHRONIZED EXCITATIONS
VIA NUMERICAL SIMULATIONS : ;
The N-particle periodic Toda lattice is described by the %0 -1 0 100 200 300 400 500
Hamiltonian 5
o
N1 z ol | |
Ho= 2. | 5 Ph+exp(dn—0ns1)|, o 2 ML | } i “ r\
h=1(2 8 |
<< t
| I
whereq,, is the displacement of theth mass from equilib- & (b) :
rium andqgy.1=qs. The lattice is a completely integrable 400 20 360 =0 200
dynamical systen{11,12 possessing famoug-gap solu- TIME, t
tions, which can be written in terms of the Riemafirfunc- L -
tion [20]: _ FIG. _1. The emergence o_f a two-gap solution in the periodic
five-particle Toda lattice(a): Displacementy, of the second atom
in the lattice vs time. (b): Displacementy, in shorter time window,
d d(nc—c't+A) 200<t<400.
Pn=Po+ 571N
dt"9((n+1)c—c't+A) We proceed by presenting results of numerical simula-
tions illustrating our ideas. Figure 1 shows emergence of a
S(nc—c't+A) two-p_hase solution for_the Qrivehl=5 periodic Toda lattice
an=0o+ Pot+In , 2) described by the Hamiltonian
J(n+1)c—c't+A) N
H=Ho+ > dnfn. @
where pg, g, €=(C1,Cp, ... ,Cg), €' =(C1,Cp, ... Cg), n=1
and A=(Aq,A,, ... ,Ay) are constants defined by initial

We used zero initial conditions and two driving components
in Eq. (3), having amplitudess; ,=0.045, 0.074, phases
with k=1,2, and linearly chirped frequenciéslyz(t)=w2,2
+ay 5, with chirp ratesa; ,=0.0020, 0.0028. The figure

conditions. These solutions are nontriviatzberiodic func-
tions of g phases of form Znk/N— wt, with the set ofg
integerske{1,2, ... N—1} and corresponding frequencies

©k - We shall Qenote this spt of inte.ggrs lyand use dimen- shows evolution of the displacemeny of the second atom
sionless time in the following. The initial value problem for i, 16 |attice. One observes that the excited motion is rather

the periodic Toda lattice is mathematically complex and reompjex. Nevertheless, we see the growth of the amplitude
alization of a multigap state with, say, a given set of frequenyf oscillations well into the nonlinear stage, despite the

cies requires very special initial conditions. Consequentlysmajiness of the driving amplitudes ,. For diagnostics of
these solutions are almost entirely dealt with on an advanceghese numerical results, we used 'spectral tools from the
mathematical leve[13,14,2Q. Nevertheless, we shall show theory of the unperturbed, periodic Toda lattjé We shall
that adding a weak forcing and starting with zero initial con-priefly describe these tools below for completeness.

ditions, one can conveniently excite and control multigap In addition to representatiof®), the g-gap solutions gov-
solutions. Our driving perturbation is a superpositiongof erned by Hamiltoniar{1) can be written a$8]

small amplitude “traveling waves,” such that the force on

29+2
the nth particle is e 2
Pr= 2 Ni—22, (D), 5)
1 2mnk . . . .
fo(t)=—= > e,c08—— —D(1)]. (3)  where allx andu are defined in terms of three linear eigen-
JN K<, N value problems of the associated discrete Hill's equation

Here ® (t) = ['Q,(t)dt are defined by slowly varying fre- (L n=8n-1¥n-1FBotnt Bnthni1=Aohn, - (6)
quencied),(t), all passing, at, saly=0, through resonances wherea,= 3exd —(0,.1—0,)/2] andb,=3p,. The set{\;}
with the unperturbed lattice, i.er(0)=wE=Zsin(7Tk/N) (the so-calledmain spectrumin Eq. (5) is the combination
[8], thus coupling thekth phase in the drive with thkth  of two sets of eigenvalues\ *} and{\ "} in Eq. (6), corre-
phase ofq,,. The number of phase®r open gaps in the sponding to the periodic #%,.n=,) and antiperiodic
main spectrum, see belgwn the excited solution will cor-  (¢,.n=—#,) boundary conditions, respectively. In con-
respond to the number of terms in the drive, while the fre-trast,{w;} (the auxiliary spectrum in Eq. (5) is the set of
quencies and amplitudes of the emerging solution will beeigenvalues corresponding to zero boundary conditigRs,
controlled by local values of the chirped driving frequencies.= ¢, =0. It is known[8] that the auxiliary spectrum. de-
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FIG. 2. The spectral analysis of the driven five-particle periodic  FIG. 3. The threshold phenomenon. The parameters and initial
Toda lattice.(a) The opening of two main spectrum gaps,,\s] conditions are the same as in Fig. 2, but the driving amplitudis
and [\ 4,\5] by passage through resonance and synchronizatiorbelow the threshold(a): The widening of the gaf\4,As5] is
(b): The frequenciesw,, of the excited wavedoty and chirped stopped shortly beyond the linear resonaribg. The frequencies
driving frequencied}, , (straight lines. wy, of the excited wavédots and chirped driving frequencie3; ,

(straight lines. The resonance between, and the chirped fre-

pends on time, while the main spectrave{\ " ,\ "} is time quency{), is discontinued.

independent and, therefore, can be found from initial condi-
tions. The structure of the spectra of tipgap solution is as  frequenciesw; 4 increase quadratically in time, just beyond
follows. If all 2N values\ of the main spectrum are ordered t=0. We shall show in Sec. Ill that this characteristic evo-
by their values, i.e.\;<\,<---<\,y, then the strict in- lution of those frequencies of the lattice, which are not rep-
equality N <A1 holds forg values ofkel4 only. The resented in the drive, indicates separability of the weakly
intervals[ A,y ,\ox+1] are calledgapsin the main spectrum. nonlinear driven lattice problem into a set imidependent
We associate the auxiliary spectrum components with thesene-degree-of-freedom problems. In addition to the slow av-
gaps as follows. Whek,, =\, ; (the gap is closegdthen  eraged evolution, we also observe oscillatory modulations of
there existsuy in the auxiliary spectrum, satisfying,,  both\ and w, in Fig. 2. These slow modulations are addi-
=\ok= N2+ 1 @nd, thus, this component remains constant intional characteristic signatures of the persistent phase locking
time. In contrast, whep\ », ,\ 5+ 1] gap is open, there exists in the system and have frequencies scaling with the driving
a correspondingu,, which oscillates between,, and amplitudes a©(e'?) (see Sec. V.
Mokt 1, 1€, N o= i (£) < N e 1. The passage throughinear resonances is an important
At this stage, we use the spectral machinery describegtage for entering synchronized nonlinear evolution. Indeed,
above in analyzing properties of odriven solution. Since our simulations show that the phase locking is established
the driving perturbation remains small throughout our calcu-during this early stage and sustained at later times, provided
lation, we view our numerical solution, at eaghas a local €ach driving amplitude exceeds a threshold. The thresholds
approximation to some solution of the unperturbed probleme¢ scale with the chirp rates ag'* (see the following sec-
Within this interpretation, we substitute the numerical solu-tion). We illustrate this phenomenon in Fig. 3, showing the
tion into Eq.(6), view t as a parameter, calculate the mainresults obtained by using the same, ande; as in Fig. 2,
spectrum\(t) of the approximatinglattice, and show the but £,=0.059, i.e., below the threshold valug=0.062.
evolution of\ in Fig. 2@). In contrast to Fig. 1, the spectral One observes the departure @f from resonance beyond
data in Fig. 2a) reveal simple structure and evolution. We =0 in this case, i.e., the loss of phase locking with the sec-
see the opening of two gaps at linear resonantes0f,  ond driving component. The first phase remains locked with
followed by the adiabatic increase of the width of each gapthe corresponding drive, but thedependentontrol of both
Given the main spectrum, the spectral theory also allows degrees of freedom becomes impossible.
us to calculate the associated frequenaggsee definitions In summarizing the spectral analysis of our numerical re-
in Ref.[21]) of the multigap solution. The dotted lines in Fig. sults, we conclude that in the phase locked state our driven
2(b) show the evolution ofw,, while the chirped driving solution approximates, at each timesome excitation of the
frequencies are represented by straight lines. One observasperturbed lattice, satisfying the resonance conditions
that in average, starting~0, both frequencies, , follow  Q(t)~wp(t), N=1,2, provided the driving amplitudes ex-
the corresponding, linearly increasing driving frequenciesceed certain thresholds. Sineg, are functions of\, the
indicating a continuing phase lockingesonance in the  approximating solution self-adjusts its main spectrum to stay
driven system. In contrast, one finds that the remaining twan resonance with the drive, as the driving frequencies vary
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3.5 : , - of the problem to passage through resonance in some effec-
tive, weakly nonlinear, one-degree-of freedom dynamical
system, where the scaling of the threshold with parameters
could be found. We shall see here that a similar reduction
exists in the periodic Toda lattice case, i.e., the weakly non-
linear limit of the driven lattice allows separation into an
ensemble ofndependenbne-degree-of-freedom, driven un-
harmonic oscillator problems.

The weakly nonlinear limit of the driven Toda lattice can
be conveniently approached by making canonical transfor-
mation to the action-angle variables of the unperturbed prob-
lem. The existence of the action-angle variable®) for
the unperturbed periodic Toda lattice is the direct result of
integrability. The formalism was developed by Flaschka and
g . . . 10 — . McLaughlin[21] and we shall use some results of this theory
-500 0 _500 10001500 -500 O _500 10001500 later. At this point, the fact of existence of the action-angle

TIME, t TIME, t variables is sufficient. Generally, the unperturldechass pe-

FIG. 4. The excitation and deexcitation of a two-gap solution for”c_)dIC Toda lattice ha\ actions. One a(?tlon IS ass‘?c.'ated
sinusoidal dependence of driving frequencigs,. (a): The open- with the _Conserv_ed total momentuf Since our drlylng
ing and near closure of two gaps in the main spectr(by. The perturbation(3) .st|II conservesP, we shgill assume, Wlthout
frequenciesw,, of the excited wavedots and chirped driving fre-  10SS of generality, tha?=0 and work withN—1 remaining
quencies); , (thin lines. The resonances; ,~Q; , is preserved action variables corresponding to nonzero frequencies. In the
when the driving frequenmeﬁlz are above the corresponding lin- linear limit, the unperturbed Ham"'fon'&ﬂ'o(') Of the lattice
ear frequenciesy? . is linear in action variables, i.eHo=3N"'l,0?. The next

order approximation is
in time. In other words, the system modifies the open gaps’
boundaries, affecting the amplitudes pf oscillations as N-1 N-1
well. Finally, we have found in simulations that using the Ho= 2 |iin+§ E aijlily, (7)
linear chirp of the driving frequencies in Figs. 1-3 was just a =t b=l
convenient choice. In principle, the time dependence of the
driving frequencies),(t)=d® (t)/dt could be arbitrary, yielding first-order nonlinear corrections to the linear fre-
but slow, allowing a complete control of the excited solution quencies:
by chirping the frequencies of the weak forcing appropri-
ately. We demonstrate such a control in Fig. 4, showing the dHg
excitation and deexcitation of a two-gap solution dE5 k= a|
periodic Toda lattice, by first increasing and then decreasing

the driving frequencies a$),(t)=wy+d,sin(agtid). We  oyr goal is to find coefficients;, in these expansions.
used the same initial conditions;; ,=0.045, 0.074, and Rather than using direct transformation to action-angle vari-
@1,=0.0020, 0.0028 as in Fig. 2, while parametefs,  ables, we shall accomplish this goal by using harmonic de-

=0.8,1.12 were such that the driving frequencies passed ﬂ‘tﬁ)mposition approadf27] applied to the evolution equations
corresponding linear frequencies at the same tithed(and  for the original displacements:
t=1250 in the Fig. & We observe the opening and the near
closure of two gap$i,,A3] and[\4,A5] in the main spec- d2q
trum in Fig. 4a), as the system goes in and out of double —Zn:exp:—(qn—qnfl)]—exp:—(qrwl—qn)]_ 9
resonance, when the driving frequencies pass the linear reso-
nances in opposite directions &0 andt=1250. Figure
4(b) illustrates satisfaction of the continuing resonance conThe salient feature of this approach is that it only requires
dition wn(t) Q,(t) in the system during the time when knowledge of the linear limit of the canonical transformation
Q,(t)>w?. The system almost returns to its initial, zero from (p,q) to (I,®) for finding nonlinear frequencie@®) to
energy state beyonid= 1250. first order in action variables. In turn, the knowledge of the
frequencies yields the weakly nonlinear Hamiltoniéf),
sufficient for studying the threshold phenomenon.
Now, we describe our calculation @f, in more detail.
The theory of thresholds for synchronization by passag&Ve show in Appendix A thaty, in the linear limit are related
through resonance was developed in a number of applicae the action-angle variablg&1] by
tions in driven dynamical and extended systefA2—26.

N
&)

FREQUENCIES
n

MAIN SPECTRUM

-
&

N-1
_wk+2 ikl - (8

Ill. THE THRESHOLD PHENOMENON

These studies showed that the thresholds are characteristic of N-1 21, 271N
weakly nonlinear stages of evolution of the driven systems. an= —cos( N —®|) (10
Furthermore, all previously studied cases allowed reduction =1 No
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where®,=o/t+ 07, while w=2sin@@/N) and®? are the 4—(0?)? w0l

linear frequencies of the lattice and initial phases. This ex- ak=0k gy T (174 (17)
pression allows us to proceed with harmonic decomposition

[27]. We seek a solution of Eq9) as a series of successive Thus, the addition of the quartic terny(,—q;)* in the

approximations expansion of Hamiltoniafil) contributes the same order cor-
W@ g®a ... (11) rection in the frequencies as the cubic term. However, this
Gn=Gn "+ 0n "+ Gn ' addition also simplifies the weakly nonlinear problem sig-

where the terms are ordered in increasing powers of nonlin?ificantly by yielding separability. By similar arguments, the
earity. In studying the coupling between a givérk] pair of separability is destroyed if one neglects the cubic terms, but

degrees of freedom, we assume the first-order approximatidffaves the quartic terms in the expansion of the Toda poten-
of form tial (the FPUB mode).

Next, we consider our resonantly driven problem gov-

erned by Hamiltonian
(D= cosA + —cosAk (12 N

0 b . H=Ho(1)+ > an(1,0)f,, (18)
whereA'=2mmn/N—wt—0,,, m=i,k, with frequencies n=1

wn including higher-order corrections: where forcef,, on thenth mass is defined in Eq3). The

on= 0O+ oD+ o@+. ... (13)  lowest-order expressiofi0) for g, can be used in the per-
turbed part of this Hamiltonian, because of the assumed

We substitute ansatd1)—(13) into Eq.(9), expand the right- smallness of ,. We recall that our driving perturbation is a
hand sidelRHS) of this equation to third order in powers of superposition ofy traveling waves having phasesr@k/N
On+1—0n. and solve the resulting equation order by order.— ®(t), whereke{1,2,... N—1} is in a set ofg integers
This procedure yields successive corrections to the linear sddenoted by Ig) while the driving frequencies(),(t)
lution and frequencies. The method is straightforward, but=d®,/dt=w+ a,t all pass(at t=0) through the reso-
involves tedious algebra. Thus, we usedrHEMATICA [28]  nance with the correspondimglinear frequencies of the un-
to show that all nondiagonal coefficierds, i#k vanish, perturbed lattice. This form of the driving perturbation al-
while the derivation of the diagonal coefficieag, is pre- lows excitation of theg-gap solution, characterized by

sented in Appendix C. The final result is simple: nonzero action variablesee Appendix A for the correspon-
dence between the number of nonzero actions and the num-

1 ber of open gaps in the main spectiurss the last prepara-
2N tory step in studying passage through resonances in our

. o _ system, we use the standard isolated resonance approxima-
Then, the weakly nonlinear Hamiltonia(@) of the lattice  tion [33], leaving g resonant terms only in the interaction
assumes the following form: part of the Hamiltonian, i.e., consider dynamics governed by

+ > sk\/ cos\Ifk, (19
kEl

whereV,=0,— ®,(t) is the phase mismatch.

2 N-1

N-1 |
H=i21(lw+m (15) HFZ (,w+_

i.e., the unperturbed problem is separable to second order in
action variables. This also mea(see the developments be- D .

low) that the problem of thresholds for synchronization byI V\-/Ii—rr:e éf/(zﬁ?gnrgsggggﬁg_ Hamiltoni&lo) yields the fol-
passage through resonances in the driven periodic Toda case 9 q ’

reduces to that foNl — 1 independen&anharmonic oscillators.
It is interesting to observe that the separability of the ﬂzg [ 1k sinw
weakly nonlinear Hamiltonian of the Toda lattice in the ac- dt "% V0 K

. . K - . k
tion variables is characteristic of the fourth-order expansion

of the original Hamiltonian in powers of,,;—d,. The 4w |
separability is destroyed if one stops at the third order in the ok Kt —K  cosW

' i i i dt 2N K V20?0 ko
expansion. For example, in the pioneering stud%-32, 22wl
the choice of the lattice Hamiltonian was

(20

N wherek e I 4. The rest of the actions remain zeiaur initial
condition on all actionsthroughout the excitation process,
Z Giv1—Gil*+5 2 (a1 —ail®, and the corresponding gaps in the spectral theory remain
(16) closed. We observe that the evolution of each paird) in
Egs.(20) is independenbdf other such pairs, and, therefore,
with a= 1/2 corresponding to the Toda potential expanded tave deal with passage through resonancg éecoupled one-
third order in displacements. In this case, we find degree-of-freedom systems. This allows us to write thresh-

2, pf

I\JII—\
I\)IH
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FIG. 5. The threshold phenomenon for the two-gap solution in  FIG. 6. Decoupling of thresholds. The driving frequendiés,
N=5 Toda lattice. The driving frequenci€k, , (thin lineg and the  (thin lineg and the frequencies of the lattieg , 3 4(thick lineg are
frequencies of the latticev; , 34 (thick lineg are shown for the shown for the same parameters as in Fig. 4, but for eitheonly
cases when both driving amplitudes, are either(a) below or (b) amplitudee, slightly above the threshold d¢b) only amplitudes ;
above the thresholds. slightly above the threshold.

olds e, for synchronization for each degree of freedom sepa- IV. SYNCHRONIZED EVOLUTION

rately by using the existing theof2]: At this stage, we proceed to fully nonlinear evolution of

synchronizedg-gap solutions. In studying this problem, we
ef=1.644]\Noy. (2D apply the spectral approach mentioned in Sec. Il. We associ-
) ) o ate with our driven lattice, at each tinig another,unper-
~ Thus, we predict multiphase locking in the system, estabyrhe |attice (the approximating lattice in the following
lished in the weakly nonlinear stage of evolution for eachgch that its main spectrum is defined by substituting the
phase.prese.n.t in the d.rlve independently, provided the corrgyiven solution into the eigenvalue equatit®), which we
sponding dnvmg ampllltude. exceeds thre;hold vak®. If rewrite here for convenience as follows:
the phase locking persists in the fully nonlinear stage of evo-
Iutio_n (see the following sect_idnas the driving frequer_lcies (L-)p=an_1¥n_1+bptyntantni1=Ag,. (22
continue to change, we achieve our goal of controlling the
excitedg-gap state of the periodic Toda lattice by varying Here
external parameters. We illustrate these predictions in Figs. 5
and 6. The figures show the results of the spectral analysis of a,=3xXt — (An+1—0n)/2], by=3Pn (23
the numerical two-gap solution for the drivéh=5 periodic
lattice with four different choices of the driving amplitudes @ré given by ourdriven solutions qn(t),pn(t) and timet
e1,. In all cases, we used two linearly chirped driving fre- S€rves as a parameter in thelspectral problem. Recall that the
quencies 0, ,= w(1),2+ ait for t<880, while beyondt mam+ sgectru_m |n+ Eq.(22) is a set of .elg.envaluest
—880 the driving frequencies were kept constant. The corre={\ A"}, with A™ corresponding to periodigh, . n=
sponding chirp rates; ,=0.002, 0.0028 were the same in @1d A~ to antiperiodic ¢+ y=— ¢, boundary conditions,
all cases. Figure(8) shows the evolution of the frequencies réSpectively. Next, we seek the description of the dependence
for £,,=0.98%,. We see that the phase locking is lost in of \ of tEe approximating lattice on parameter _
the early stage of evolution. FigurétB, in contrast, depicts L€t ¢ be the orthonormal eigenvector corresponding to
the evolution of the frequencies when both driving ampli-€igenvalue\, of Eq. (22). Then
tudes are just above the thresholeds,=1.01s7,. We ob-
serve that a stable phase locking;(>=(), ;) continues into
the strongly nonlinear stage. In Figgaband &b) we further
illustrate the decoupling of the thresholds for each degree o
freedom. The figure shows two cases with similar parameters
as in Fig. 5, but when only one of the driving amplitudes is d\ /dt= gt (dL/dt) - gk (25)
above its threshold, i.e., for;=0.9%{, £,=1.015 and
£1=1.01e5, e,=0.9%5 respectively. In both cases only one The spectral theory of the unperturbed Toda lattgee Refs.
phase in the excited solution is phase locked to the corrd-12,14), and[8]) uses another matri® (the second operator
sponding driving component. in the Lax paij defined by

Ne= KT L gk (24)

y differentiating this expression and using the Hermiticity
f L and orthonormality of/*, we obtain
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B-¥)p=a,_1¥n-1—2a . 26 dv, do
( ¢)n n 1'ﬂn 1 n'ﬂn+1 ( ) d—t|=d—tl—Q|(t)=w|()\)—ﬂ|(t)+0(8). (34)
One can show that in the unperturbed problem

where w|(\) is the frequency of the approximating lattice,
corresponding to the action variaklgee Appendix A asso-
where[B,L]=B-L—L-B. A similar result fordL/dt also ciated with thelth Open gap in the main spectrum at time .
holds in our case, but one must take into account the forcingl-hese frequencies depend on the Io_cal _values_of the main
which yields additional diagonal terms in E@®7). Indeed, pectrum components of _the approximating Iz_itt|ce and can
by using the definition22) and (23), one finds be evaluatgd |f.the eyoluuon of the spe.ctru.m is known. We
have seen in simulations that synchronization in our system
dL,, 1dp, means a continuing satisfaction of resonance condition
a2 di (28) @ (\)—Q,(t)=0, despite the time variation of the driving
frequencyQ,(t). We shall see later that the actual frequency
difference in the multiphase locked state remain®(§/?).

dL/dt=[B,L], (27)

Therefore, the presence of external fofgeon thenth mass

modifies Eq.(27) to Thus, Eqs(34) is _aIso a system aflow evolution equations.
Our next goal is to analyze our slow system, E84) and
dL 1 (34). We observe thatyX|2 in Eq. (31) are periodic in vari-
gt _[B.LI+5F, (29 ablesf,=2mmn/N-0,,, i.e., one can Fourier expand
Where_an=fn6nm. By substituting Eq.(2£_)) into Eq. (25 |¢Ir<]|2:2 bX exp(im- 6), (35)
we arrive at the desired system of evolution equations: m

Mo ko Lot ‘ where coefficientdk, depend on\. We substitute the last
dat ¢ [B,L]-yt+ 5‘/’ Fey (30 expression and the driving ford8) into Eq. (31) and again
use the isolated resonances approximation, i.e., leave only
Here, by definition ofyX, the first term vanishes and, there- the slow(resonantterms in the resulting equation:
fore (compare to similar developments for the KdV equation
[34]) dy 1

W— \/_N |E| 8|B:(Sin‘1’:(. (36)
dye 1 Ki2 ’
——==2> filvf? k=1,2,...,N. (3D) y y
dt 2% HereB| and o) are absolute values and complex phases of

the corresponding Fourier coefficients, while the phase mis-
Note that the main spectrum componenisfor the ap-  match¥[=0,— ®,+ o now includessf and is viewed as a
proximating lattice are not independent and ket deter-  slow function of time due to the synchronization assumption.
mines set\~ and vice versd8]. Therefore, the evolution \We check in Appendix D that the weakly nonlinear limit of
equations for eitheh™ or N~ are sufficient, reducing the Egs.(31) and(34) yields Eqs.(20) of the weakly nonlinear
number of independent equatiof®l) to N. Also, we have  action-angle formalism. This formalism was used in Sec. Il
shown thatg driving components in Eq(3) openg gaps to demonstrate that the multiphase locking in the system is

only. This adds N—1)—g relations: established in the weakly nonlinear limit if the amplitudes of
the corresponding driving components exceed the thresholds.
}\2kj :)\2kj+1’ (32 Now, we proceed to the analysis of the fully nonlinear stage
of synchronized evolution.
where indexk; corresponds to the closed gags=@+1g9 In the fully nonlinear stage, al(e) terms(including the
+2., ... .N—1). Finally, one additional relation between the new termdo-:(/dt) in Eq. (34) can be neg|ected Compared to
main spectrum componentg], O(&*?) oscillations ofw,— Q in this equation(see below:

Consequently, we omit indekin the phase mismatches in
the following. In analyzing the modulational stability of the
synchronized evolution, we choose a setgoindependent
components of the main spectrum, denote these component
reflects conservation of the total moment@nin the driven by A,, and seek solutions of Eq$36) and (34) of form
system, and we are left withindependenequationg31) for ~ A,=A,+ 5A, and ¥, =V, + 5¥,, where A, and ¥, <1

the main spectrum. The RHS in Eq®81) is of O(e), ¢  are smooth, slow averages, whi&\, and ¥, are small
being a small parameter characterizing the strength of thg 4 oscillating. We definé(t) by w,(A)—Q(t)=0 and

driving perturbation. Consequently, this is a systenslofv ) .
evolution equations. The phases of the excijedegrees of use them to find¥ from the smooth part of E¢36):

freedom enter the RHS of this slow system. Therefore, for dx 1
completeness, we add equations for the corresponding k.~ > s|§rsin(\1_f|). (37)
phase mismatche=0,—®(t) (Iely): N =

2N
P=2> \ =0, (33
k=1
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When the smooth objects are known, the oscillating com- 25000
ponents are governed by 5 sl (a) = 4000 (b)
i
= =
d(SAy) 1 Q © 3000
dt N 8IQF&PI (38) %J 0 gzooo
N I'e Ig =z E
< 5 W 1000
=
and % 0 A
- 0 1000 2000 (o) 0.05 8'1 0.15
d(sw) o TIME, t ,\ FREQUENCY,v
TR E TéAI . (39 £5000
lel -
s oA § 5 (c) Sa000f (d)
s
By fixing the coefficients in this linear problem locally and E £ 3000
seeking solutions of forndA,, oW ,~exp(—iut), we obtain & ©° & 2000
the characteristic equation z i
g W 1000
— 2= S
De{M—»%]=0, (40 0 1000 2000 2 % 0.05 0.1 0.15
TIME, t FREQUENCY,v
where
. FIG. 7. Modulational stability of synchronized two-gap solution.
1 — All driving frequencies remain constant beyontd 880. (a), (c):
Mkm:\/_— > — B (41)  The evolution of the main spectrum for two sets of driving ampli-
NTely dAn tudes: £1 ;= £,=0.135, 0.08[Fig. 5@] and e, ;= ep=2¢, [Fig.

. . . . . . . 5(c)]. The power Fourier spectra of energy modulations using
andl is the identity matrix. The characteristic equation yleldsdriVGSS61 (b), ande, (d). The characteristic frequenciesincrease

g real frequencies,, all small and ofO(¢?), if the evo- .

lution is stable. Then albA, (and, therefore, the amplitudes by 2 whene; doubles.

of oscillatory modulations of the main spectrum compo-

nents scale a(s?), justifying the neglect oD(¢) terms  tion approach. The synchronization was achieved by using a
in Eq. (34). In the weakly nonlinear evolution stage, above superposition of chirped frequency driving perturbations
the thresholdsy, are real, while our numerical examples passing through multiple resonances with the lattice at rest.
show the continuing phase locking in the system and oscil- (b) The initial, weakly nonlinear stage of evolution of the
lating modulations of both the main spectrirand the fre-  driven lattice plays an important role in synchronization by
quenciesw(\) around slowly evolving averages. In order to Passage through resonances. We have shown that in the
further test the predictions of our modulational theory, weweakly nonlinear limit the Hamiltonian of the driven Toda
return to numerics, showing some results in Fig. 7. We exlattice is separable in action-angle variables. This enables
cited a two-gap solution ilN=5 periodic lattice by chirped independent synchronization of each phase of the excited
frequency drives, but stopped the chirping and kept the twéolution with the corresponding driving component, provided
driving frequencies constanf), ,=2.9 and 4.36 beyond the amplitudes of this component exceeds a threshold. All
=880. We used parametets, ,=0.0020, 0.0028 and two thresholds scale as 3/4 power of the corresponding driving
setss; ,=£,=0.135, 0.08 and:,=2s,. Figures Ta) and  frequency chirp rate.

7(c) show the evolution of the main spectrum for the set (C) The synchronization in the system continues beyond
eap, respectively. As predicted, the averaged evolution ofhe weakly nonlinear stage, as the frequencies of the excited
the main spectra is nearly the same for both sets, ofThe ~ Multiphase state of the lattice self-adjust to stay in resonance
modulations of\;, in contrast, were different. We observed With all components in the drive, while the solution performs
that the open gaps’ widths remain constant, in average, bé large excursion in the solutions space in the process of
yond t=880 and time Fourier analyzed the energy of the€volution. The time variation of each driving frequency in
resulting quasisteady synchronized state. The power spectfa€ Synchronized state can be arbitréoyt slow and inde-
P(») of energy modulations for the two setsafare shown Pendent of other driving frequencies, allowing to cover much
in Figs. 7b) and 7d). We see that, indeed, there exiato  Of then-gap solutions space. Thus, we achieve a full control
characteristic frequencies; in the spectrum and both fre- Of the excitation by weak forcing and slow variation of ex-
quencies increase by factg® when one doubles, . These t€mal parametertthe driving frequencies _ _
results illustrate the stability of the synchronized evolution, (@) Our theory predicts that stable synchronized solutions

as well as the predicted(s?) scaling of the characteristic are characterized b@(\/&) oscillating modulations of the
modulation frequencies. main spectrum. The frequencies of these modulations are

also small and scale &(+/z). We have verified this scaling

in simulations.
(e) Finally, application of similar synchronization ideas to
From above, we have made the following conclusions. excitation and control of nontrivial multiphase states in other
(a) We have studied excitation and control of multiphasedynamical and extended systems seems to be an important

n-gap solutions of the periodic Toda lattice by synchroniza-goal for future research.

V. CONCLUSIONS

066214-8



MULTIPHASE CONTROL OF A NONLINEAR LATTICE PHYSICAL REVIEW E68, 066214 (2003

ACKNOWLEDGMENTS nents. Let us calculate the widf=N\,, 1 — Ay Of the kth
open gap to lowest order in small amplitude of lattice oscil-
Tations.

The orthonormal eigenfunctions of Eg\4) for the lattice
at rest, corresponding to the degenerate pair of eigenvalues
}\2k,2k+11 k:1,2, e N, are

This research was supported by the Israel Science Foun
dation (Grant No. 187/02 One of the authorgM.K.) is
grateful to E. Khain for many fruitful discussions.

APPENDIX A: LINEAR LIMIT OF SPECTRAL THEORY

i i i 1 1 .
At various stages of the developme_nts in t_h|s_ work we ¢Ii|=—e' . ()DIEIZ —eimd 1=1,... N, (A7)
needed objects of the spectral theory in the limit of small JN JN
amplitude excitations. We find these objects in this appendix.
where 7,= w(k+ N)/N. In studying small deviations of the

1. Main spectrum gaps at small excitations lattice from rest, we introduce small operafor

The action-angle variables for the periodic Toda lattice _ 1 1
were introduced by Flaschka and McLaughl2i] and we (L )= (@n-1=2) -1+ bnihn (80— 2) ¥nsa

shall use their results below. We define (A8)
or, recalling the definitiongAl),
8n= 3 — (Gpo1-0)/2], bo=2py  (AL) g A
and write the evolution equations for the unperturbed Toda (L )n=—4(An=CGn-1)¥n-1+ 2 Pnihn
lattice as ~ 11— A Y1 (A9)
d ~
% =an(b,—bni1), (A2) We useL to form matrix
db, Li=e"Logf, ij=12 (A10)
—=2(a?_,;—ad). (A3) . .
dt Then by the secular perturbation theory, the eigenvalues of

K are first-order corrections to the degenerate eigenvalues
2k.2k+1 Of the unperturbed problem.
By using definitions(A7), (A9), (A10), and simple alge-

(Ly)p=a,_1¥n_1+bpntan 1=\, (A4) bra, we find

The associated spectral problem uses solutions of these equ
tions as coefficients in the following linear systé®,14:

which defines the main spectrum i.e., a combination of L1,=15,=0, L5,=(L5)* (A11)
two sets ofN eigenvalues\™ and\~ corresponding to pe-
riodic (4. n=,) and antiperiodic ¢, ,n=— ) bound- &nd
ary, conditions respectively. 1 N
Both A and\~ areN independent integrals of motion of i2mkn/N
the periodic lattice. Let us orger the maingspectmrso that Lz 2N 4 Z [P 2idnsin(mk/N) Je - (AL2)
Ni<\,<=...=<\,y. Then thekth action variable is de- . ] o ]
fined by Since the linear frequencies of the periodic Toda lattice are
wy=2sin(@k/N) [35],
2 (e [AN)+VAN)Z—4
= (=N K= In’ > dx, e - 1 XN o o
™I Nk (A8) Lk=(Tk) *=5N 2 n—iopgy)e? ™ N (A13)
wherek=1,2,...N—1 and Equations(A11) and (A12) show that the eigenvalues bf
2N are equal toi|t'§2| and, therefore, the corresponding open
A(x)zzmﬂl (A—\))+4 (A6)  9ap width is
i=

— _nITk
is the discriminant of the spectral problem. 8= Nar1~ha=2lLyd. (AL4)
One can easily show that for the lattice at rest=€ 1/2 _ _
andb,=0), \, =cos(27k/N) and\, = cog=(2k+1)/N] and, 2. Eigenfunctions
therefore, the main spectrumnis doubly degenerate except ~ Now, we calculate the eigenfunctiong*™? and 2
for eigenvalues\; and\,y . Furthermore, in this limith,,  system(A9) corresponding to nearly degenerate eigenvalues
=Ny 1= —cos@k/N) for k=1,2,... N—1 and each de- M\, 1 and\,.. The secular perturbation theory can be used
generate pair of the eigenvalues belongs to eikheror A~ again, yielding
set. The excitation of the lattice may remove the degeneracy okt 1 ‘ «
and open gaps between the degenerate spectrum compo- Y= anert ae; (A15)
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and Nokr1— Aok Nokr1 Aok

A=— TCOSI + - a— (A25)
YK = a5+ g, (A16)

where ¢f and ¢% are given by Egs.(A7), and a; ¢ obtain

=(aq1,a19) anda,=(ay;,ayy) are normalized eigenvectors Nogpes 1—
of matrix (A10). Then, a straightforward calculation gives = —J ( ) sirft dt, (A26)
el Lk nielt h
= efmie e (A17)  where
and 2MIT (v=2])
j=1
Y= - : (A27)
1 0 (A= N2) (A= Nk 1)
¢2k=ﬁ(¢§+ue'wkt¢§>. (A18)
To leading order indy, the factorvy, in integral (A26) is
constant,
3. The action variables
N
At this stage, we observe that a general solution for the 2_ _oN o+
Toda lattice in the linear limit can be written as a superposi- 2 |H1 (Nax ) (A28)
tion of traveling waves: Ao
N—1
2min and, therefore,
= 21 Amos(T —olt— @f’) . (A19)

||
mlp

ik - (A29)

Then, it can be shown that each wave component in Eg.
(A19) opens exacﬂy)ne gap in the main spectrum. Indeed, Then, by SUbStltUtlng/k—ZN/wk for the unperturbed lattice

by substituting Eq(A19) into Eq. (A13), we obtain (see Appendix B one has

Tk _1; 0 .0 N

L1,=5iA o expliwgt) (A20) |k:—o5ﬁ- (A30)

Zwk
and, therefore,
5k:Akw(k)- (A21) Finally, by using Eq(A21), we find A= \/2Ik/(ka°) and,
therefore,
Next, we relate the linear limit of thkth action variable N_1 ol -

(Ab) to the corresponding open gap width. We expand Eq. _ ! S( min Ot—G)O) A31
(A5) to leading order ins. We assuméwith no loss of gen- Gn 21 V No! CO™N @ 1) (A3D)

erality) that both\,, and\,..; belong to thex™ spectrum

and use an alternative expression for the discrimih@ht
APPENDIX B: COEFFICIENTS 1y,

N

We shall use definitions,” = cos(2l/N) for the lattice at
—oN _y t |
A(N)=2 ]_|:|1 (N=N)+2. (A22)

rest in calculating coefficien, in Eq. (A28). We shall also
assume thah, in this equation belongs to sat'. Then,
Then, we see that IiQQHOA()\)ZZ in the region of integra- A=\, =cos(2mVN), where Zn=k+N, and Eq.(A28)

tion in Eq.(A5). To next order, the integrand in EGA5) can ~ PEComes
be approximated as "
2_ _oN H COS( 2'7Tm) COS{ZWIH (B1)
AN+ VAN -4 Y=~ | N s N
'”‘ o > = =VA(N) -2 (A23) #mN=m

Alternatively, after some algebra,
and, therefore,

N m(m+1)

2 2k+1 . _ .
Ikz(_l)N_k;j)\k VA(O)—2dN. (A24) ve=22N"? I1:[1 smz[—N _
Aok

I#m,N—m

(B2)

By changing the integration variable in the last integral We use the last expression to write
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N

ye(x)=2N"1 Il:[l

I#m,N—m

(2)

, (B3) e =20+ o= (A - (andy)?

al
—+X

sin N

(Dg(1) _oy(1)g(1)
where the definition ofy,(x) is extended to arbitrarx +205°Gn-1 7 205 Gl (CH)

=mm/N+z. We shall take the limiz—O0 in obtaining the

final result. One can rewrite EGB3) as Here, on using Eq(C4), we obtain
N—1 2 (2) w2A2
7l d Ay [2wk
2N~ 1]_[ sin| 15 +X — —q®@,+2qP-q®?, = sm( )sm(2A ),
=0
Y(X)= . [ 2am (B4) (C7)
|sinz||sin| —— +z
N C
yielding
Finally, we observe that the numerator in E84) is equal to .
(see Ref[36]) [sin(Nx)|=|sin(N2)| and take the limiz—O0, Al 2mk
yielding (2= ——|sin(2A%). (C9)
N 2N . .
W= o T = 5 - (B5)  Next, we collect all third-order terms in E¢C2)
[sin(27m/N)| 0
d2 & 2 1 3 3 3 1 2
APPENDIX C: WEAKLY NONLINEAR FREQUENCIES 4 —20p07qV=q, - 29V +q¥; ~[a{21a92),
Here we calculate the diagonal coefficiertg, in the ) (2) (1) (2) (2)
weakly nonlinear frequencies of the Toda lattice, 9n=1Gn- (an- v
N-1 +aP(a? - a1 3(a”
0
=wyt il - C1
W= Wy 21 ikli ( ) 51]:21)3+(q(1)_ (1)1)3]’ (Cg)

We use the harmonic decomposition analy€dg] in this  which, upon using EqgC4) and(C8), gives
calculation. Our starting point is the system of evolution

equations for the lattice d2 (3)
. G 2ekelda —aghir2a—a,
q
— =exf — (Gp—Gn-1)]— X — (Gps1—0n)]- s o
dt Agwy K
(C2) = COSA . (C10

We seek a solution of EqC2) in the form of a series of
successive approximations, ordered in powers of the amphBy equating the coefficient in front of the first harmonic

tude of the leading term in the series: terms(with cosA¥) in the last equation to zero, one finds
My g4 g3 2.0
Gn=0n " +dn ' +0y". (C3 Afw

" o)== (c11)

We use the ansatz

(Ca) Finally, by relating the amplitud@, to the corresponding

action (see Appendix A A=21/(NwD), we havew(?
=1,/(2N), and, therefore,

q(M=A.cosAk,

where Ak=27kn/N—0, and O,=w,t+0}, but, unlike
the linear casew, includes higher-order corrections, i.e, 1

wr= 0+ oM+ 0@, (c5) AN (€12

We shall also set{"'=0, because, generally, the first cor-  The analysis above shows that both the cubic and the

rection to the linear frequency is linear in action variables orquartic terms in the expansion of the potential of the lattice

equivalently, quadratic in the amplitude of the leading termin powers of displacements contribu®1) correction to the
(1) We substitute our series solution into E2) and frequency. If one keeps only the cubic terms in Eg9), by

coIIect the second-order terms similar developments, one obtains
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d2g® A weak excitation of the lattice may remove the degen-
; —20202qM—q®),+2q®—q®), eracy between eigenvalugg, and\ . 1 in the main spec-
dt trum and the evolution 06, =\, 1— Ao iS given by
Aﬁwgz ( Wk)
=— cog cosAK (C13 ddy
2 N " —o =32 fallyd 2= 1w, (D5)

instead of Eq(C7) and, therefore, an incorrect coefficient
Here, the eigenfunctiong**! and %%, corresponding to

. =co§(7rk/N) _ 4- o (C14 Noki1 andhyy, are given by EqA17) and(A18). A simple
kk 2N 8N calculation, based on Eq#A17), (A18), and (A7), yields
in the lowest-order nonlinear frequency of the lattice. 1 2.7kn
|y kle_N 1—sin( N —w(k’t) , (D6)
APPENDIX D: WEAKLY NONLINEAR
EVOLUTION EQUATIONS 1 ok
[ 2wkn
This appendix deals with the weakly nonlinear limit of the | ¢ﬁk|2=N 1+ sm( N wﬁt) (D7)
slow evolution equations in our spectral thepsge Eqs(31)
and(34)J Therefore,
dxk 1
22 folvnl?, (D) d6 2mkn
men — X E f sm( —wEt). (D8)
dw,
gr ~ M) =) +0O(e). (D2)  Here, we substitute our forcingee Eq.(3)]
The goal is to reduce these equations to their action-angle
counterpartgsee Eqs(20)]: lZI 8|COE{ (t)} (D9)
[
dlj/dt=eg; Z—IO sind;, (D3)  where® (t)~w’t in the phase locked regime. Then, in the
@i isolated resonance approximation,
I gj
dV, /dt= '+ — — Q;(t) + ——— cosW¥;. (D4) déy ey
: " 2N : 2‘/2w?|i : W: - 2\/N sm‘l’k (D].O)

The equivalence between Eq®92) and (D4) is obvious,
thus we discuss the correspondence between ®qs.and  Finally, by usings, from Eqg. (A30) in the last equation, we
(D3). recover Eq(D3).
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