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Multiphase control of a nonlinear lattice

M. Khasin and L. Friedland
Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

~Received 25 July 2003; published 31 December 2003!

Large amplitude, multiphase excitations of the periodic Toda lattice (n-gap solutions! are created and
controlled by small forcing. The approach uses passage through an ensemble of resonances and subsequent
multiphase self-locking of the system with adiabatic wavelike perturbations. The synchronization of each phase
in the excited lattice proceeds from the weakly nonlinear stage, where the problem can be reduced to that for
a number of independent, driven, one-degree-of-freedom oscillatory systems. Due to this separability, the phase
locking at this stage is robust, provided the amplitude of the corresponding forcing component exceeds a
threshold, which scales as 3/4 power of the corresponding frequency chirp rate. The adiabatic synchronization
continues into a fully nonlinear stage, as the driven lattice self-adjusts its state to remain in a persisting and
stable multifrequency resonance with the driving perturbation. Thus, a complete control of then-gap state
becomes possible by slow variation of external parameters.

DOI: 10.1103/PhysRevE.68.066214 PACS number~s!: 05.45.Xt
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I. INTRODUCTION

Integrable and near-integrable nonlinear systems comp
a foundation for modeling and understanding a large var
of nonlinear phenomena@1#. Therefore, finding realizable
methods of excitation and control of different coherent sta
in these systems is one of the main goals of nonlinear
ence. In many cases, one knows that a certain nontrivial
lution in a nonlinear system exists, but its realization requi
satisfaction of very complicated initial/boundary condition
making these states practically unaccessible. For exam
some one-dimensional systems@2# possess multiphase solu
tions described by nontrivial nonlinear functions of ma
variables~phases!, all of form kx2vt, with different wave
vectorsk and frequenciesv in each phase. The question
how to excite and control one of such solutions.

Recently, in a number of applications in extended syste
@3–7#, a new approach to realization of some of nontriv
coherent states was suggested. The idea was based on
ing from a simple, easily realizable equilibrium and adding
special driving perturbation, such that the desired nontriv
state of the system was reached in the process of evolu
In particular, in Ref. @7#, multiphase solutions of the
Korteweg–de Vries~KdV! equation were excited from zer
by a perturbation in the form of a superposition of wav
with slowly varying frequencies, passing through multip
resonances in the system. It was found that under cer
conditions, the perturbed KdV system multiphase lock
~synchronized! with the driving perturbation, yielding a larg
excursion in the solutions space, as the driving frequen
varied in time. Due to this synchronization, a complete c
trol of a multiphase state of the KdV system was achieved
slow variation of external parameters. In the present work
apply similar ideas to excitation and control of multiple d
grees of freedom of a periodic Toda lattice.

The Toda lattice@8# is one of the most studied dynamic
systems. It is a chain of unit masses, each interacting with
two neighbors via exponential interaction potential. Wea
nonlinear approximations to the lattice played an import
role in the resolution of the Fermi-Pasta-Ulam~FPU! para-
1063-651X/2003/68~6!/066214~13!/$20.00 68 0662
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dox @9,10#. The continuum limit of the lattice allowed a con
venient approach to nonlinear partial differential equatio
contributing to the development of the modern nonlinear s
ence of systems of many degrees of freedom. The integra
ity of the Toda lattice was proven by Henon@11# and Fl-
aschka@12#, and its initial value problem comprised one
the famous applications of the inverse scattering transfo
method@13,14#. The Toda lattice and its various approxim
tions continue to attract scientific attention with applicatio
in mathematical physics@15#, statistical physics@16#, con-
densed matter@17#, and soliton physics@18,19#, to name just
few recent examples. In the present work, we focus on
N-periodic Toda lattice and pose a question of how
strongly excite a desired numbern(n,N) of degrees of free-
dom ~each characterized by its action-angle variables! in the
system by starting with the lattice at rest and applying s
chronizing, adiabatically varying perturbations. We seek
continuing multiphase locking in the system, accompan
by a large~but reversible! deformation of the driven solution
yielding a desired nontrivial state in the process of evoluti

The scope of our presentation will be as follows. We sh
illustrate our approach by numerical simulations in Sec.
We shall considerN55 periodic lattice example and sho
that a desired number of degrees of freedom in the sys
can be excited, provided the amplitudes of the correspond
components in the synchronizing perturbation of a particu
type exceed certain thresholds. We shall analyze this thr
old phenomenon in Sec. III, showing that the thresholds
characteristic signatures of resonant trapping by pass
through multiple resonances in the weakly nonlinear stag
evolution of our system. We shall also show that the wea
nonlinear limit of the driven periodic Toda lattice can b
represented byN21 decoupleddriven anharmonic oscilla-
tors. As a consequence, each degree of freedom can be
cited independently. This will allow us to use the existing
results for one-degree-of-freedom synchronized system
calculating the multiphase synchronization thresholds for
Toda lattice. Section IV will present our theory of a full
nonlinear synchronized evolution of the driven lattice. Als
in Sec. IV, the theoretical scaling of frequencies of sm
©2003 The American Physical Society14-1
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modulations of synchronized states versus driving am
tudes will be tested numerically. Finally, Sec. V will prese
our conclusions.

II. SYNCHRONIZED EXCITATIONS
VIA NUMERICAL SIMULATIONS

The N-particle periodic Toda lattice is described by t
Hamiltonian

H05 (
n51

N F1

2
pn

21exp~qn2qn11!G , ~1!

whereqn is the displacement of thenth mass from equilib-
rium and qN115q1. The lattice is a completely integrabl
dynamical system@11,12# possessing famousg-gap solu-
tions, which can be written in terms of the Riemannq func-
tion @20#:

pn5p01
d

dt
ln

q~nc2c8t1D!

q„~n11!c2c8t1D…

qn5q01p0t1 ln
q~nc2c8t1D!

q„~n11!c2c8t1D…

, ~2!

where p0 , q0 , c5(c1 ,c2 , . . . ,cg), c85(c18 ,c28 , . . . ,cg8),
and D5(D1 ,D2 , . . . ,Dg) are constants defined by initia
conditions. These solutions are nontrivial 2p-periodic func-
tions of g phases of form 2pnk/N2vkt, with the set ofg
integerskP$1,2, . . . ,N21% and corresponding frequencie
vk . We shall denote this set of integers byI g and use dimen-
sionless timet in the following. The initial value problem for
the periodic Toda lattice is mathematically complex and
alization of a multigap state with, say, a given set of frequ
cies requires very special initial conditions. Consequen
these solutions are almost entirely dealt with on an advan
mathematical level@13,14,20#. Nevertheless, we shall sho
that adding a weak forcing and starting with zero initial co
ditions, one can conveniently excite and control multig
solutions. Our driving perturbation is a superposition ofg
small amplitude ‘‘traveling waves,’’ such that the force o
the nth particle is

f n~ t !5
1

AN
(

kPI g

«k cosF2pnk

N
2Fk~ t !G . ~3!

Here Fk(t)5* tVk(t)dt are defined by slowly varying fre
quenciesVk(t), all passing, at, sayt50, through resonance
with the unperturbed lattice, i.e.,Vk(0)5vk

052sin(pk/N)
@8#, thus coupling thekth phase in the drive with thekth
phase ofqn . The number of phases~or open gaps in the
main spectrum, see below! in the excited solution will cor-
respond to the number of terms in the drive, while the f
quencies and amplitudes of the emerging solution will
controlled by local values of the chirped driving frequenci
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We proceed by presenting results of numerical simu
tions illustrating our ideas. Figure 1 shows emergence o
two-phase solution for the driven,N55 periodic Toda lattice
described by the Hamiltonian

H5H01 (
n51

N

qnf n . ~4!

We used zero initial conditions and two driving compone
in Eq. ~3!, having amplitudes«1,250.045, 0.074, phase
with k51,2, and linearly chirped frequenciesV1,2(t)5v1,2

0

1a1,2t, with chirp ratesa1,250.0020, 0.0028. The figure
shows evolution of the displacementq2 of the second atom
in the lattice. One observes that the excited motion is rat
complex. Nevertheless, we see the growth of the amplit
of oscillations well into the nonlinear stage, despite t
smallness of the driving amplitudes«1,2. For diagnostics of
these numerical results, we used spectral tools from
theory of the unperturbed, periodic Toda lattice@8#. We shall
briefly describe these tools below for completeness.

In addition to representation~2!, theg-gap solutions gov-
erned by Hamiltonian~1! can be written as@8#

pn5 (
i 51

2g12

l i22(
i 51

g

m i~ t !, ~5!

where alll andm are defined in terms of three linear eige
value problems of the associated discrete Hill’s equation

~L•c!n[an21cn211bncn1ancn115lcn , ~6!

wherean5 1
2 exp@2(qn112qn)/2# andbn5 1

2 pn . The set$l i%
~the so-calledmain spectrum! in Eq. ~5! is the combination
of two sets of eigenvalues$l1% and$l2% in Eq. ~6!, corre-
sponding to the periodic (cn1N5cn) and antiperiodic
(cn1N52cn) boundary conditions, respectively. In con
trast, $m i% ~the auxiliary spectrum! in Eq. ~5! is the set of
eigenvalues corresponding to zero boundary conditions,cN
5c150. It is known @8# that the auxiliary spectrumm de-

FIG. 1. The emergence of a two-gap solution in the perio
five-particle Toda lattice.~a!: Displacementq2 of the second atom
in the lattice vs timet. ~b!: Displacementq2 in shorter time window,
200,t,400.
4-2
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pends on time, while the main spectruml[$l1,l2% is time
independent and, therefore, can be found from initial con
tions. The structure of the spectra of theg-gap solution is as
follows. If all 2N valuesl of the main spectrum are ordere
by their values, i.e.,l1<l2<•••<l2N , then the strict in-
equality l2k,l2k11 holds for g values ofkPI g only. The
intervals@l2k ,l2k11# are calledgapsin the main spectrum
We associate the auxiliary spectrum components with th
gaps as follows. Whenl2k5l2k11 ~the gap is closed!, then
there existsmk in the auxiliary spectrum, satisfyingmk
5l2k5l2k11 and, thus, this component remains constan
time. In contrast, when@l2k ,l2k11# gap is open, there exist
a correspondingmk , which oscillates betweenl2k and
l2k11, i.e., l2k<mk(t)<l2k11.

At this stage, we use the spectral machinery descri
above in analyzing properties of ourdriven solution. Since
the driving perturbation remains small throughout our cal
lation, we view our numerical solution, at eacht, as a local
approximation to some solution of the unperturbed proble
Within this interpretation, we substitute the numerical so
tion into Eq. ~6!, view t as a parameter, calculate the ma
spectruml(t) of the approximating lattice, and show the
evolution ofl in Fig. 2~a!. In contrast to Fig. 1, the spectra
data in Fig. 2~a! reveal simple structure and evolution. W
see the opening of two gaps at linear resonances (t50),
followed by the adiabatic increase of the width of each g
Given the main spectruml, the spectral theory also allow
us to calculate the associated frequenciesvn ~see definitions
in Ref. @21#! of the multigap solution. The dotted lines in Fi
2~b! show the evolution ofvn , while the chirped driving
frequencies are represented by straight lines. One obse
that in average, startingt'0, both frequenciesv1,2 follow
the corresponding, linearly increasing driving frequenci
indicating a continuing phase locking~resonance! in the
driven system. In contrast, one finds that the remaining

FIG. 2. The spectral analysis of the driven five-particle perio
Toda lattice.~a! The opening of two main spectrum gaps@l2 ,l3#
and @l4 ,l5# by passage through resonance and synchroniza
~b!: The frequenciesvn of the excited wave~dots! and chirped
driving frequenciesV1,2 ~straight lines!.
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frequenciesv3,4 increase quadratically in time, just beyon
t50. We shall show in Sec. III that this characteristic ev
lution of those frequencies of the lattice, which are not re
resented in the drive, indicates separability of the wea
nonlinear driven lattice problem into a set ofindependent,
one-degree-of-freedom problems. In addition to the slow
eraged evolution, we also observe oscillatory modulations
both l andvn in Fig. 2. These slow modulations are add
tional characteristic signatures of the persistent phase loc
in the system and have frequencies scaling with the driv
amplitudes asO(«1/2) ~see Sec. IV!.

The passage throughlinear resonances is an importa
stage for entering synchronized nonlinear evolution. Inde
our simulations show that the phase locking is establis
during this early stage and sustained at later times, provi
each driving amplitude exceeds a threshold. The thresh
«n

c scale with the chirp rates asan
3/4 ~see the following sec-

tion!. We illustrate this phenomenon in Fig. 3, showing t
results obtained by using the samea1,2 and«1 as in Fig. 2,
but «250.059, i.e., below the threshold value«2

c50.062.
One observes the departure ofv2 from resonance beyondt
50 in this case, i.e., the loss of phase locking with the s
ond driving component. The first phase remains locked w
the corresponding drive, but theindependentcontrol of both
degrees of freedom becomes impossible.

In summarizing the spectral analysis of our numerical
sults, we conclude that in the phase locked state our dri
solution approximates, at each timet, some excitation of the
unperturbed lattice, satisfying the resonance conditi
Vn(t)'vn(t), n51,2, provided the driving amplitudes ex
ceed certain thresholds. Sincevn are functions ofl, the
approximating solution self-adjusts its main spectrum to s
in resonance with the drive, as the driving frequencies v

c

n.

FIG. 3. The threshold phenomenon. The parameters and in
conditions are the same as in Fig. 2, but the driving amplitude«2 is
below the threshold.~a!: The widening of the gap@l4 ,l5# is
stopped shortly beyond the linear resonance.~b!: The frequencies
vn of the excited wave~dots! and chirped driving frequenciesV1,2

~straight lines!. The resonance betweenv2 and the chirped fre-
quencyV2 is discontinued.
4-3
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in time. In other words, the system modifies the open ga
boundaries, affecting the amplitudes ofm oscillations as
well. Finally, we have found in simulations that using t
linear chirp of the driving frequencies in Figs. 1–3 was jus
convenient choice. In principle, the time dependence of
driving frequenciesVn(t)[dFn(t)/dt could be arbitrary,
but slow, allowing a complete control of the excited soluti
by chirping the frequencies of the weak forcing approp
ately. We demonstrate such a control in Fig. 4, showing
excitation and deexcitation of a two-gap solution ofN55
periodic Toda lattice, by first increasing and then decreas
the driving frequencies asVn(t)5vn

01dnsin(ant/dn). We
used the same initial conditions,«1,250.045, 0.074, and
a1,250.0020, 0.0028 as in Fig. 2, while parametersd1,2
50.8,1.12 were such that the driving frequencies passed
corresponding linear frequencies at the same time (t50 and
t51250 in the Fig. 4!. We observe the opening and the ne
closure of two gaps@l2 ,l3# and @l4 ,l5# in the main spec-
trum in Fig. 4~a!, as the system goes in and out of doub
resonance, when the driving frequencies pass the linear r
nances in opposite directions att50 and t51250. Figure
4~b! illustrates satisfaction of the continuing resonance c
dition vn(t)'Vn(t) in the system during the time whe
Vn(t).vn

0 . The system almost returns to its initial, ze
energy state beyondt51250.

III. THE THRESHOLD PHENOMENON

The theory of thresholds for synchronization by pass
through resonance was developed in a number of app
tions in driven dynamical and extended systems@22–26#.
These studies showed that the thresholds are characteris
weakly nonlinear stages of evolution of the driven system
Furthermore, all previously studied cases allowed reduc

FIG. 4. The excitation and deexcitation of a two-gap solution
sinusoidal dependence of driving frequenciesV1,2. ~a!: The open-
ing and near closure of two gaps in the main spectrum.~b!: The
frequenciesvn of the excited wave~dots! and chirped driving fre-
quenciesV1,2 ~thin lines!. The resonancev1,2'V1,2 is preserved
when the driving frequenciesV1,2 are above the corresponding lin
ear frequencies,v1,2

0 .
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of the problem to passage through resonance in some e
tive, weakly nonlinear, one-degree-of freedom dynami
system, where the scaling of the threshold with parame
could be found. We shall see here that a similar reduct
exists in the periodic Toda lattice case, i.e., the weakly n
linear limit of the driven lattice allows separation into a
ensemble ofindependentone-degree-of-freedom, driven un
harmonic oscillator problems.

The weakly nonlinear limit of the driven Toda lattice ca
be conveniently approached by making canonical trans
mation to the action-angle variables of the unperturbed pr
lem. The existence of the action-angle variables (I ,Q) for
the unperturbed periodic Toda lattice is the direct result
integrability. The formalism was developed by Flaschka a
McLaughlin@21# and we shall use some results of this theo
later. At this point, the fact of existence of the action-ang
variables is sufficient. Generally, the unperturbedN-mass pe-
riodic Toda lattice hasN actions. One action is associate
with the conserved total momentumP. Since our driving
perturbation~3! still conservesP, we shall assume, withou
loss of generality, thatP50 and work withN21 remaining
action variables corresponding to nonzero frequencies. In
linear limit, the unperturbed HamiltonianH0(I ) of the lattice
is linear in action variables, i.e.,H05( i 51

N21I iv i
0 . The next

order approximation is

H05 (
i 51

N21

I iv i
01

1

2 (
i , j 51

N21

ai j I i I j , ~7!

yielding first-order nonlinear corrections to the linear fr
quencies:

vk5
]H0

]I k
5vk

01 (
i 51

N21

aikI i . ~8!

Our goal is to find coefficientsaik in these expansions
Rather than using direct transformation to action-angle v
ables, we shall accomplish this goal by using harmonic
composition approach@27# applied to the evolution equation
for the original displacements:

d2qn

dt2
5exp@2~qn2qn21!#2exp@2~qn112qn!#. ~9!

The salient feature of this approach is that it only requi
knowledge of the linear limit of the canonical transformati
from (p,q… to (I ,Q) for finding nonlinear frequencies~8! to
first order in action variables. In turn, the knowledge of t
frequencies yields the weakly nonlinear Hamiltonian~7!,
sufficient for studying the threshold phenomenon.

Now, we describe our calculation ofaik in more detail.
We show in Appendix A thatqn in the linear limit are related
to the action-angle variables@21# by

qn5 (
l 51

N21 A 2I l

Nv l
0
cosS 2p ln

N
2Q l D , ~10!

r

4-4
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whereQ l5v l
0t1Q l

0 , while v l
052sin(pl/N) andQ l

0 are the
linear frequencies of the lattice and initial phases. This
pression allows us to proceed with harmonic decomposi
@27#. We seek a solution of Eq.~9! as a series of successiv
approximations

qn5qn
(1)1qn

(2)1qn
(3)1•••, ~11!

where the terms are ordered in increasing powers of non
earity. In studying the coupling between a given (i ,k) pair of
degrees of freedom, we assume the first-order approxima
of form

qn
(1)5A 2I i

Nv i
0

cosDn
i 1A 2I k

Nvk
0

cosDn
k , ~12!

whereDn
m52pmn/N2vmt2Qm

0 , m5 i ,k, with frequencies
vm including higher-order corrections:

vm5vm
(0)1vm

(1)1vm
(2)1•••. ~13!

We substitute ansatz~11!–~13! into Eq.~9!, expand the right-
hand side~RHS! of this equation to third order in powers o
qn112qn , and solve the resulting equation order by ord
This procedure yields successive corrections to the linear
lution and frequencies. The method is straightforward,
involves tedious algebra. Thus, we usedMATHEMATICA @28#
to show that all nondiagonal coefficientsaik , iÞk vanish,
while the derivation of the diagonal coefficientakk is pre-
sented in Appendix C. The final result is simple:

aik5
1

2N
d ik . ~14!

Then, the weakly nonlinear Hamiltonian~7! of the lattice
assumes the following form:

H5 (
i 51

N21 S I iv i
01

I i
2

4ND , ~15!

i.e., the unperturbed problem is separable to second ord
action variables. This also means~see the developments be
low! that the problem of thresholds for synchronization
passage through resonances in the driven periodic Toda
reduces to that forN21 independentanharmonic oscillators

It is interesting to observe that the separability of t
weakly nonlinear Hamiltonian of the Toda lattice in the a
tion variables is characteristic of the fourth-order expans
of the original Hamiltonian in powers ofqn112qn . The
separability is destroyed if one stops at the third order in
expansion. For example, in the pioneering studies@29–32#,
the choice of the lattice Hamiltonian was

H5
1

2 (
i 51

N

pi
21

1

2 (
i 50

N

@qi 112qi #
21

a

3 (
i 50

N

@qi 112qi #
3,

~16!

with a51/2 corresponding to the Toda potential expanded
third order in displacements. In this case, we find
06621
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aik5d ik

42~vk
0!2

8N
1~12d ik!

v i
0vk

0

4N
. ~17!

Thus, the addition of the quartic term (qi 112qi)
4 in the

expansion of Hamiltonian~1! contributes the same order co
rection in the frequencies as the cubic term. However,
addition also simplifies the weakly nonlinear problem s
nificantly by yielding separability. By similar arguments, th
separability is destroyed if one neglects the cubic terms,
leaves the quartic terms in the expansion of the Toda po
tial ~the FPU-b model!.

Next, we consider our resonantly driven problem go
erned by Hamiltonian

H5H0~ I !1 (
n51

N

qn~ I ,Q! f n , ~18!

where forcef n on thenth mass is defined in Eq.~3!. The
lowest-order expression~10! for qn can be used in the per
turbed part of this Hamiltonian, because of the assum
smallness off n . We recall that our driving perturbation is
superposition ofg traveling waves having phases 2pnk/N
2Fk(t), wherekP$1,2, . . . ,N21% is in a set ofg integers
~denoted by I g), while the driving frequenciesVk(t)
5dFk /dt5vk

01akt all pass ~at t50) through the reso-
nance with the correspondingg linear frequencies of the un
perturbed lattice. This form of the driving perturbation a
lows excitation of theg-gap solution, characterized byg
nonzero action variables~see Appendix A for the correspon
dence between the number of nonzero actions and the n
ber of open gaps in the main spectrum!. As the last prepara-
tory step in studying passage through resonances in
system, we use the standard isolated resonance approx
tion @33#, leaving g resonant terms only in the interactio
part of the Hamiltonian, i.e., consider dynamics governed

Hr5 (
i 51

N21 S I iv i
01

I i
2

4ND 1 (
kPI g

«kA I k

2vk
0

cosCk , ~19!

whereCk[Qk2Fk(t) is the phase mismatch.
The isolated resonance Hamiltonian~19! yields the fol-

lowing evolution equations:

dIk

dt
5«kA I k

2vk
0

sinCk ,

dCk

dt
5

I k

2N
2akt1

«k

2A2vk
0I k

cosCk , ~20!

wherekPI g . The rest of the actions remain zero~our initial
condition on all actions! throughout the excitation proces
and the corresponding gaps in the spectral theory rem
closed. We observe that the evolution of each pair (I k ,Ck) in
Eqs. ~20! is independentof other such pairs, and, therefor
we deal with passage through resonance ing decoupled one-
degree-of-freedom systems. This allows us to write thre
4-5
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M. KHASIN AND L. FRIEDLAND PHYSICAL REVIEW E 68, 066214 ~2003!
olds«k
c for synchronization for each degree of freedom se

rately by using the existing theory@22#:

«k
c51.644ak

3/4ANvk
0. ~21!

Thus, we predict multiphase locking in the system, est
lished in the weakly nonlinear stage of evolution for ea
phase present in the drive independently, provided the co
sponding driving amplitude exceeds threshold value~21!. If
the phase locking persists in the fully nonlinear stage of e
lution ~see the following section!, as the driving frequencie
continue to change, we achieve our goal of controlling
excited g-gap state of the periodic Toda lattice by varyin
external parameters. We illustrate these predictions in Fig
and 6. The figures show the results of the spectral analys
the numerical two-gap solution for the drivenN55 periodic
lattice with four different choices of the driving amplitude
«1,2. In all cases, we used two linearly chirped driving fr
quencies V1,25v1,2

0 1a1,2t for t,880, while beyond t
5880 the driving frequencies were kept constant. The co
sponding chirp ratesa1,250.002, 0.0028 were the same
all cases. Figure 5~a! shows the evolution of the frequencie
for «1,250.98«1,2

c . We see that the phase locking is lost
the early stage of evolution. Figure 5~b!, in contrast, depicts
the evolution of the frequencies when both driving amp
tudes are just above the thresholds«1,251.01«1,2

c . We ob-
serve that a stable phase locking (v1,2.V1,2) continues into
the strongly nonlinear stage. In Figs. 6~a! and 6~b! we further
illustrate the decoupling of the thresholds for each degre
freedom. The figure shows two cases with similar parame
as in Fig. 5, but when only one of the driving amplitudes
above its threshold, i.e., for«150.95«1

c , «251.01«2
c and

«151.01«1
c , «250.99«2

c respectively. In both cases only on
phase in the excited solution is phase locked to the co
sponding driving component.

FIG. 5. The threshold phenomenon for the two-gap solution
N55 Toda lattice. The driving frequenciesV1,2 ~thin lines! and the
frequencies of the latticev1,2,3,4 ~thick lines! are shown for the
cases when both driving amplitudes«1,2 are either~a! below or~b!
above the thresholds.
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IV. SYNCHRONIZED EVOLUTION

At this stage, we proceed to fully nonlinear evolution
synchronizedg-gap solutions. In studying this problem, w
apply the spectral approach mentioned in Sec. II. We ass
ate with our driven lattice, at each timet, another,unper-
turbed lattice ~the approximating lattice in the following!,
such that its main spectrum is defined by substituting
driven solution into the eigenvalue equation~6!, which we
rewrite here for convenience as follows:

~L•c!n[an21cn211bncn1ancn115lcn . ~22!

Here

an5 1
2 exp@2~qn112qn!/2#, bn5 1

2 pn ~23!

are given by ourdriven solutions qn(t),pn(t) and time t
serves as a parameter in the spectral problem. Recall tha
main spectrum in Eq.~22! is a set of eigenvaluesl
[$l1,l2%, with l1 corresponding to periodiccn1N5cn
and l2 to antiperiodiccn1N52cn boundary conditions,
respectively. Next, we seek the description of the depende
of l of the approximating lattice on parametert.

Let ck be the orthonormal eigenvector corresponding
eigenvaluelk of Eq. ~22!. Then

lk5ck†
•L•ck. ~24!

By differentiating this expression and using the Hermitic
of L and orthonormality ofck, we obtain

dlk /dt5ck†
•~dL/dt!•ck. ~25!

The spectral theory of the unperturbed Toda lattice~see Refs.
@12,14#, and@8#! uses another matrixB ~the second operato
in the Lax pair! defined by

n FIG. 6. Decoupling of thresholds. The driving frequenciesV1,2

~thin lines! and the frequencies of the latticev1,2,3,4~thick lines! are
shown for the same parameters as in Fig. 4, but for either~a! only
amplitude«2 slightly above the threshold or~b! only amplitude«1

slightly above the threshold.
4-6
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~B•c!n[an21cn212ancn11 . ~26!

One can show that in the unperturbed problem

dL/dt5@B,L#, ~27!

where @B,L#[B•L2L•B. A similar result fordL/dt also
holds in our case, but one must take into account the forc
which yields additional diagonal terms in Eq.~27!. Indeed,
by using the definitions~22! and ~23!, one finds

dLnn

dt
5

1

2

dpn

dt
. ~28!

Therefore, the presence of external forcef n on thenth mass
modifies Eq.~27! to

dL

dt
5@B,L#1

1

2
F, ~29!

whereFnm5 f ndnm . By substituting Eq.~29! into Eq. ~25!
we arrive at the desired system of evolution equations:

dlk

dt
5ck†

•@B,L#•ck1
1

2
ck†

•F•ck. ~30!

Here, by definition ofck, the first term vanishes and, ther
fore ~compare to similar developments for the KdV equati
@34#!

dlk

dt
5

1

2 (
n

f nucn
ku2, k51,2, . . . ,2N. ~31!

Note that the main spectrum componentslk for the ap-
proximating lattice are not independent and setl1 deter-
mines setl2 and vice versa@8#. Therefore, the evolution
equations for eitherl1 or l2 are sufficient, reducing the
number of independent equations~31! to N. Also, we have
shown thatg driving components in Eq.~3! open g gaps
only. This adds (N21)2g relations:

l2kj
5l2kj 11 , ~32!

where indexkj corresponds to the closed gaps (j 5g11,g
12, . . . ,N21). Finally, one additional relation between th
main spectrum components@8#,

P52(
k51

2N

lk
150, ~33!

reflects conservation of the total momentumP in the driven
system, and we are left withg independentequations~31! for
the main spectrum. The RHS in Eqs.~31! is of O(«), «
being a small parameter characterizing the strength of
driving perturbation. Consequently, this is a system ofslow
evolution equations. The phases of the excitedg degrees of
freedom enter the RHS of this slow system. Therefore,
completeness, we addg equations for the correspondin
phase mismatchesC l[Q l2F l(t) ( l PI g):
06621
g,

e

r

dC l

dt
5

dQ l

dt
2V l~ t !5v l~l!2V l~ t !1O~«!, ~34!

wherev l(l) is the frequency of the approximating lattic
corresponding to the action variable~see Appendix A! asso-
ciated with thel th open gap in the main spectrum at timet.
These frequencies depend on the local values of the m
spectrum components of the approximating lattice and
be evaluated if the evolution of the spectrum is known. W
have seen in simulations that synchronization in our sys
means a continuing satisfaction of resonance condi
v l(l)2V l(t).0, despite the time variation of the drivin
frequencyV l(t). We shall see later that the actual frequen
difference in the multiphase locked state remains ofO(«1/2).
Thus, Eqs.~34! is also a system ofslowevolution equations.

Our next goal is to analyze our slow system, Eqs.~31! and
~34!. We observe thatucn

ku2 in Eq. ~31! are periodic in vari-
ablesum[2pmn/N2Qm , i.e., one can Fourier expand

ucn
ku25(

m
bm

k exp~ im•u!, ~35!

where coefficientsbm
k depend onl. We substitute the las

expression and the driving force~3! into Eq. ~31! and again
use the isolated resonances approximation, i.e., leave
the slow~resonant! terms in the resulting equation:

dlk

dt
5

1

AN
(
l PI g

« lBl
ksinC l

k . ~36!

HereBl
k ands l

k are absolute values and complex phases
the corresponding Fourier coefficients, while the phase m
matchC l

k5Q l2F l1s l
k now includess l

k and is viewed as a
slow function of time due to the synchronization assumpti
We check in Appendix D that the weakly nonlinear limit o
Eqs. ~31! and ~34! yields Eqs.~20! of the weakly nonlinear
action-angle formalism. This formalism was used in Sec.
to demonstrate that the multiphase locking in the system
established in the weakly nonlinear limit if the amplitudes
the corresponding driving components exceed the thresho
Now, we proceed to the analysis of the fully nonlinear sta
of synchronized evolution.

In the fully nonlinear stage, allO(«) terms~including the
new termds l

k/dt) in Eq. ~34! can be neglected compared
O(«1/2) oscillations ofvk2Vk in this equation~see below!.
Consequently, we omit indexl in the phase mismatches i
the following. In analyzing the modulational stability of th
synchronized evolution, we choose a set ofg independent
components of the main spectrum, denote these compo
by Lk , and seek solutions of Eqs.~36! and ~34! of form
Lk5L k̄1dLk and Ck5C̄k1dCk , where L̄k and C̄k!1
are smooth, slow averages, whiledLk and dCk are small
and oscillating. We defineL̄(t) by vk(L̄)2Vk(t)50 and
use them to findC̄k from the smooth part of Eq.~36!:

dL̄k

dt
5

1

AN
(
l PI g

« l B̄l
ksin~C̄ l !. ~37!
4-7
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When the smooth objects are known, the oscillating co
ponents are governed by

d~dLk!

dt
52

1

AN
(
l PI g

« l B̄l
kdC l ~38!

and

d~dCk!

dt
52 (

l PI g

]v̄k

]L̄ l

dL l . ~39!

By fixing the coefficients in this linear problem locally an
seeking solutions of formdLk ,dCn;exp(2int), we obtain
the characteristic equation

Det@M2n2I #50, ~40!

where

Mkm5
1

AN
(
l PI g

]v̄ l

]L̄m

« l B̄l
k ~41!

andI is the identity matrix. The characteristic equation yiel
g real frequenciesnn , all small and ofO(«1/2), if the evo-
lution is stable. Then alldLk ~and, therefore, the amplitude
of oscillatory modulations of the main spectrum comp
nents! scale asO(«1/2), justifying the neglect ofO(«) terms
in Eq. ~34!. In the weaklynonlinear evolution stage, abov
the thresholds,nn are real, while our numerical example
show the continuing phase locking in the system and os
lating modulations of both the main spectruml and the fre-
quenciesv(l) around slowly evolving averages. In order
further test the predictions of our modulational theory,
return to numerics, showing some results in Fig. 7. We
cited a two-gap solution inN55 periodic lattice by chirped
frequency drives, but stopped the chirping and kept the
driving frequencies constant,V1,252.9 and 4.36 beyondt
5880. We used parametersa1,250.0020, 0.0028 and two
sets«1,25«a50.135, 0.08 and«b52«a . Figures 7~a! and
7~c! show the evolution of the main spectrum for the s
«a,b , respectively. As predicted, the averaged evolution
the main spectra is nearly the same for both sets of« i . The
modulations ofl i , in contrast, were different. We observe
that the open gaps’ widths remain constant, in average,
yond t5880 and time Fourier analyzed the energy of t
resulting quasisteady synchronized state. The power spe
P(n) of energy modulations for the two sets of« i are shown
in Figs. 7~b! and 7~d!. We see that, indeed, there existtwo
characteristic frequenciesn i in the spectrum and both fre
quencies increase by factorA2 when one doubles« i . These
results illustrate the stability of the synchronized evolutio
as well as the predictedO(«1/2) scaling of the characteristi
modulation frequencies.

V. CONCLUSIONS

From above, we have made the following conclusions
~a! We have studied excitation and control of multipha

n-gap solutions of the periodic Toda lattice by synchroni
06621
-

-

il-

-

o

t
f

e-

tra

,

-

tion approach. The synchronization was achieved by usin
superposition of chirped frequency driving perturbatio
passing through multiple resonances with the lattice at re

~b! The initial, weakly nonlinear stage of evolution of th
driven lattice plays an important role in synchronization
passage through resonances. We have shown that in
weakly nonlinear limit the Hamiltonian of the driven Tod
lattice is separable in action-angle variables. This enab
independent synchronization of each phase of the exc
solution with the corresponding driving component, provid
the amplitude«k of this component exceeds a threshold. A
thresholds scale as 3/4 power of the corresponding driv
frequency chirp rate.

~c! The synchronization in the system continues beyo
the weakly nonlinear stage, as the frequencies of the exc
multiphase state of the lattice self-adjust to stay in resona
with all components in the drive, while the solution perform
a large excursion in the solutions space in the proces
evolution. The time variation of each driving frequency
the synchronized state can be arbitrary~but slow! and inde-
pendent of other driving frequencies, allowing to cover mu
of then-gap solutions space. Thus, we achieve a full con
of the excitation by weak forcing and slow variation of e
ternal parameters~the driving frequencies!.

~d! Our theory predicts that stable synchronized solutio
are characterized byO(A«) oscillating modulations of the
main spectrum. The frequencies of these modulations
also small and scale asO(A«). We have verified this scaling
in simulations.

~e! Finally, application of similar synchronization ideas
excitation and control of nontrivial multiphase states in oth
dynamical and extended systems seems to be an impo
goal for future research.

FIG. 7. Modulational stability of synchronized two-gap solutio
All driving frequencies remain constant beyondt5880. ~a!, ~c!:
The evolution of the main spectrum for two sets of driving amp
tudes: «1,25«a50.135, 0.08@Fig. 5~a!# and «1,25«b52«a @Fig.
5~c!#. The power Fourier spectra of energy modulations us
drives«a ~b!, and«b ~d!. The characteristic frequenciesn increase
by A2 when« i doubles.
4-8
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APPENDIX A: LINEAR LIMIT OF SPECTRAL THEORY

At various stages of the developments in this work
needed objects of the spectral theory in the limit of sm
amplitude excitations. We find these objects in this appen

1. Main spectrum gaps at small excitations

The action-angle variables for the periodic Toda latt
were introduced by Flaschka and McLaughlin@21# and we
shall use their results below. We define

an5 1
2 exp@2~qn112qn!/2#, bn5 1

2 pn ~A1!

and write the evolution equations for the unperturbed To
lattice as

dan

dt
5an~bn2bn11!, ~A2!

dbn

dt
52~an21

2 2an
2!. ~A3!

The associated spectral problem uses solutions of these e
tions as coefficients in the following linear system@12,14#:

~Lc!n[an21cn211bncn1ancn115lcn , ~A4!

which defines the main spectruml, i.e., a combination of
two sets ofN eigenvaluesl1 andl2 corresponding to pe
riodic (cn1N5cn) and antiperiodic (cn1N52cn) bound-
ary, conditions respectively.

Both l1 andl2 areN independent integrals of motion o
the periodic lattice. Let us order the main spectruml so that
l1<l2<5•••<l2N . Then thekth action variable is de-
fined by

I k5~21!N2k
2

pEl2k

l2k11
lnUD~l!1AD~l!224

2
Udl,

~A5!

wherek51,2, . . . ,N21 and

D~l!522N)
j 51

2N

~l2l j !14 ~A6!

is the discriminant of the spectral problem.
One can easily show that for the lattice at rest (an51/2

andbn50), lk
15cos(2pk/N) andlk

25cos@p(2k11)/N# and,
therefore, the main spectruml is doubly degenerate excep
for eigenvaluesl1 andl2N . Furthermore, in this limit,l2k
5l2k1152cos(pk/N) for k51,2, . . . ,N21 and each de-
generate pair of the eigenvalues belongs to eitherl1 or l2

set. The excitation of the lattice may remove the degener
and open gaps between the degenerate spectrum co
06621
n-

ll
x.

a

ua-

cy
po-

nents. Let us calculate the widthdk[l2k112l2k of the kth
open gap to lowest order in small amplitude of lattice osc
lations.

The orthonormal eigenfunctions of Eq.~A4! for the lattice
at rest, corresponding to the degenerate pair of eigenva
l2k,2k11 , k51,2, . . . ,N, are

w1l
k 5

1

AN
eihkl , w2l

k 5
1

AN
e2 ihkl , l 51, . . . ,N, ~A7!

wherehk5p(k1N)/N. In studying small deviations of the
lattice from rest, we introduce small operatorL̃

~ L̃•c!n[~an212 1
2 !cn211bncn1~an2 1

2 !cn11
~A8!

or, recalling the definitions~A1!,

~ L̃•c!n[2 1
4 ~qn2qn21!cn211 1

2 pncn

2 1
4 ~qn112qn!cn11 . ~A9!

We useL̃ to form matrix

L̃ i j
k [w i

k†
•L̃•w j

k , i , j 51,2. ~A10!

Then, by the secular perturbation theory, the eigenvalue
L̃k are first-order corrections to the degenerate eigenva
l2k,2k11 of the unperturbed problem.

By using definitions~A7!, ~A9!, ~A10!, and simple alge-
bra, we find

L̃11
k 5L̃22

k 50, L̃21
k 5~ L̃12

k !* ~A11!

and

L̃12
k 5

1

2N (
n51

N

@pn22iqnsin~pk/N!#ei2pkn/N. ~A12!

Since the linear frequencies of the periodic Toda lattice
vk

052sin(pk/N) @35#,

L̃12
k 5~ L̃21

k !* 5
1

2N (
n51

N

~pn2 ivk
0qn!ei2pkn/N. ~A13!

Equations~A11! and ~A12! show that the eigenvalues ofL̃k

are equal to6uL̃12
k u and, therefore, the corresponding op

gap width is

dk[l2k112l2k52uL̃12
k u. ~A14!

2. Eigenfunctions

Now, we calculate the eigenfunctionsc2k11 and c2k of
system~A9! corresponding to nearly degenerate eigenval
l2k11 andl2k . The secular perturbation theory can be us
again, yielding

c2k115a11w1
k1a12w2

k ~A15!
4-9
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and

c2k5a21w1
k1a22w2

k , ~A16!

where w1
k and w2

k are given by Eqs.~A7!, and a1

5(a11,a12) anda25(a21,a22) are normalized eigenvector
of matrix ~A10!. Then, a straightforward calculation gives

c2k115
1

A2
~w1

k2 ieivk
0tw2

k! ~A17!

and

c2k5
1

A2
~w1

k1 ieivk
0tw2

k!. ~A18!

3. The action variables

At this stage, we observe that a general solution for
Toda lattice in the linear limit can be written as a superpo
tion of traveling waves:

qn5 (
l 51

N21

AlcosS 2p ln

N
2v l

0t2Q l
0D . ~A19!

Then, it can be shown that each wave component in
~A19! opens exactlyonegap in the main spectrum. Indee
by substituting Eq.~A19! into Eq. ~A13!, we obtain

L̃12
k 5 1

2 iAkvk
0exp~ ivk

0t ! ~A20!

and, therefore,

dk5Akvk
0 . ~A21!

Next, we relate the linear limit of thekth action variable
~A5! to the corresponding open gap width. We expand
~A5! to leading order ind. We assume~with no loss of gen-
erality! that bothl2k andl2k11 belong to thel1 spectrum
and use an alternative expression for the discriminant@8#:

D~l![2N)
j 51

N

~l2l j
1!12. ~A22!

Then, we see that lim
dk→0

D(l)52 in the region of integra-

tion in Eq.~A5!. To next order, the integrand in Eq.~A5! can
be approximated as

lnUD~l!1AD~l!224

2
U.AD~l!22 ~A23!

and, therefore,

I k.~21!N2k
2

pEl2k

l2k11AD~l!22dl. ~A24!

By changing the integration variable in the last integral
06621
e
i-

q.

.

l52
l2k112l2k

2
cost1

l2k111l2k

2
, ~A25!

we obtain

I k.
2

pE0

p

gkS l2k112l2k

2 D 2

sin2t dt, ~A26!

where

gk5
A

2

2N)
j 51

N

~l2l j
1!

~l2l2k!~l2l2k11!
. ~A27!

To leading order indk , the factorgk in integral ~A26! is
constant,

gk
2522N )

l 51

l2kÞl l
1

N

~l2k2l l
1! ~A28!

and, therefore,

I k5 1
2 gkdk

2 . ~A29!

Then, by substitutinggk52N/vk
0 for the unperturbed lattice

~see Appendix B!, one has

I k5
N

2vk
0
dk

2 . ~A30!

Finally, by using Eq.~A21!, we find Ak5A2I k /(Nvk
0) and,

therefore,

qn5 (
l 51

N21 A 2I l

Nv l
0
cosS 2p ln

N
2v l

0t2Q l
0D . ~A31!

APPENDIX B: COEFFICIENTS gk

We shall use definitionsl l
15cos(2pl/N) for the lattice at

rest in calculating coefficientgk in Eq. ~A28!. We shall also
assume thatl2k in this equation belongs to setl1. Then,
l2k5lm

15cos(2pm/N), where 2m5k1N, and Eq. ~A28!
becomes

gk
2522N )

l 51
lÞm,N2m

N FcosS 2pm

N D2cosS 2p l

N D G . ~B1!

Alternatively, after some algebra,

gk
2522N22 )

l 51
lÞm,N2m

N

sin2Fp~m1 l !

N G . ~B2!

We use the last expression to write
4-10
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gk~x!52N21 )
l 51

lÞm,N2m

N UsinS p l

N
1xD U, ~B3!

where the definition ofgk(x) is extended to arbitraryx
5pm/N1z. We shall take the limitz→0 in obtaining the
final result. One can rewrite Eq.~B3! as

gk~x!5

2N21 )
l 50

N21 UsinS p l

N
1xD U

usinzuUsinS 2pm

N
1zD U . ~B4!

Finally, we observe that the numerator in Eq.~B4! is equal to
~see Ref.@36#! usin(Nx)u5usin(Nz)u and take the limitz→0,
yielding

gk5
N

usin~2pm/N!u
5

2N

vk
0

. ~B5!

APPENDIX C: WEAKLY NONLINEAR FREQUENCIES

Here we calculate the diagonal coefficientsakk in the
weakly nonlinear frequencies of the Toda lattice,

vk5vk
01 (

i 51

N21

aikI i . ~C1!

We use the harmonic decomposition analysis@27# in this
calculation. Our starting point is the system of evoluti
equations for the lattice

d2qn

dt2
5exp@2~qn2qn21!#2exp@2~qn112qn!#.

~C2!

We seek a solution of Eq.~C2! in the form of a series of
successive approximations, ordered in powers of the am
tude of the leading term in the series:

qn5qn
(1)1qn

(2)1qn
(3) . ~C3!

We use the ansatz

qn
(1)5AkcosDn

k , ~C4!

where Dn
k[2pkn/N2Qk and Qk5vkt1Qk

0 , but, unlike
the linear case,vk includes higher-order corrections, i.e,

vk5vk
01vk

(1)1vk
(2) . ~C5!

We shall also setvk
(1)50, because, generally, the first co

rection to the linear frequency is linear in action variables
equivalently, quadratic in the amplitude of the leading te
qn

(1) . We substitute our series solution into Eq.~C2! and
collect the second-order terms
06621
li-

r,

d2qn
(2)

dt2
5qn11

(2) 22qn
(2)1qn21

(2) 2 1
2 @~qn11

(1) !22~qn11
(1) !2

12qn
(1)qn21

(1) 22qn
(1)qn11

(1) #. ~C6!

Here, on using Eq.~C4!, we obtain

d2qn
(2)

dt2
2qn11

(2) 12qn
(2)2qn21

(2) 5
vk

02Ak
2

2
sinS 2pk

N D sin~2Dn
k!,

~C7!

yielding

qn
(2)5

Ak
2

2vk
02

sinS 2pk

N D sin~2Dn
k!. ~C8!

Next, we collect all third-order terms in Eq.~C2!

d2qn
(3)

dt2
22vk

0vk
(2)qn

(1)5qn11
(3) 22qn

(3)1qn21
(3) 2@qn11

(1) qn11
(2)

2qn21
(1) qn21

(2) 1qn
(1)~qn21

(2) 2qn11
(2) !

1qn
(2)~qn21

(1) 2qn11
(1) !#2 1

6 @~qn
(1)

2qn11
(1) !31~qn

(1)2qn21
(1) !3#, ~C9!

which, upon using Eqs.~C4! and ~C8!, gives

d2qn
(3)

dt2
22vk

0vk
(2)qn

(1)2qn11
(3) 12qn

(3)2qn21
(3)

52
Ak

3vk
02

2
cosDn

k . ~C10!

By equating the coefficient in front of the first harmon
terms~with cosDn

k) in the last equation to zero, one finds

vk
(2)5

Ak
2vk

0

4
. ~C11!

Finally, by relating the amplitudeAk to the corresponding
action ~see Appendix A!, Ak5A2I k /(Nvk

0), we havevk
(2)

5I k /(2N), and, therefore,

akk5
1

2N
. ~C12!

The analysis above shows that both the cubic and
quartic terms in the expansion of the potential of the latt
in powers of displacements contributeO(I ) correction to the
frequency. If one keeps only the cubic terms in Eq.~C9!, by
similar developments, one obtains
4-11



e

ng

n-

e

M. KHASIN AND L. FRIEDLAND PHYSICAL REVIEW E 68, 066214 ~2003!
d2qn
(3)

dt2
22vk

0vk
(2)qn

(1)2qn11
(3) 12qn

(3)2qn21
(3)

52
Ak

3vk
02

2
cos2S pk

N D cosDn
k ~C13!

instead of Eq.~C7! and, therefore, an incorrect coefficient

akk5
cos2~pk/N!

2N
5

42vk
02

8N
~C14!

in the lowest-order nonlinear frequency of the lattice.

APPENDIX D: WEAKLY NONLINEAR
EVOLUTION EQUATIONS

This appendix deals with the weakly nonlinear limit of th
slow evolution equations in our spectral theory@see Eqs.~31!
and ~34!#:

dlk

dt
5 1

2 (
n

f nucn
ku2, ~D1!

dCk

dt
5vk~l!2Vk~ t !1O~«!. ~D2!

The goal is to reduce these equations to their action-a
counterparts@see Eqs.~20!#:

dIi /dt5« iA I i

2v i
0

sinC i , ~D3!

dC i /dt5v i
01

I i

2N
2V i~ t !1

« i

2A2v i
0I i

cosC i . ~D4!

The equivalence between Eqs.~D2! and ~D4! is obvious,
thus we discuss the correspondence between Eqs.~D1! and
~D3!.
o

a-
,

06621
le

A weak excitation of the lattice may remove the dege
eracy between eigenvaluesl2k andl2k11 in the main spec-
trum and the evolution ofdk[l2k112l2k is given by

ddk

dt
5 1

2 (
n

f n~ ucn
2k11u22ucn

2ku2!. ~D5!

Here, the eigenfunctionsc2k11 and c2k, corresponding to
l2k11 andl2k , are given by Eqs.~A17! and~A18!. A simple
calculation, based on Eqs.~A17!, ~A18!, and~A7!, yields

ucn
2k11u25

1

N F12sinS 2pkn

N
2vk

0t D G , ~D6!

ucn
2ku25

1

N F11sinS 2pkn

N
2vk

0t D G . ~D7!

Therefore,

ddk

dt
52

1

N (
n

f nsinS 2pkn

N
2vk

0t D . ~D8!

Here, we substitute our forcing@see Eq.~3!#

f n5
1

AN
(
l PI g

« lcosF2pnl

N
2F l~ t !G , ~D9!

whereF l(t)'v l
0t in the phase locked regime. Then, in th

isolated resonance approximation,

ddk

dt
52

«k

2AN
sinCk . ~D10!

Finally, by usingdk from Eq. ~A30! in the last equation, we
recover Eq.~D3!.
tt.
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